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Abstract
We investigate the action of local unitary operations on multimode (pure or
mixed) Gaussian states and single out the minimal number of locally invariant
parameters which completely characterize the covariance matrix of such states.
For pure Gaussian states, central resources for continuous-variable quantum
information, we investigate separately the parameter reduction due to the
additional constraint of global purity, and the one following by the local-unitary
freedom. Counting arguments and insights from the phase-space Schmidt
decomposition and in general from the framework of symplectic analysis,
accompany our description of the standard form of pure n-mode Gaussian
states. In particular, we clarify why only in pure states with n � 3 modes
all the direct correlations between position and momentum operators can be
set to zero by local unitary operations. For any n, the emerging minimal set
of parameters contains complete information about all forms of entanglement
in the corresponding states. An efficient state engineering scheme (able to
encode direct correlations between position and momentum operators as well)
is proposed to produce entangled multimode Gaussian resources, its number of
optical elements matching the minimal number of locally invariant degrees of
freedom of general pure n-mode Gaussian states. Finally, we demonstrate that
so-called ‘block-diagonal’ Gaussian states, without direct correlations between
position and momentum, are systematically less entangled, on average, than
arbitrary pure Gaussian states.
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1. Prologue

Entanglement between the subsystems of composite quantum systems is arguably one of
the most radical features of quantum mechanics, the one invoking a dramatic departure
from classical principles [1]. This is probably one of the reasons why a fully satisfactory
understanding and characterization of such a feature in the most general setting is still
lacking. Accordingly, the task of developing a comprehensive theoretical framework to
qualify and quantify multipartite entanglement stands as a major issue to be achieved in
quantum physics. A novel insight into the role of entanglement in the description of quantum
systems has been gained through the quantum information perspective, mostly focusing
on the usefulness of entanglement, rather than on its mathematical characterization. In
these years, quantum entanglement has turned from a paradoxical concept into a physical
resource allowing for the encoding, manipulation, processing and distribution of information
in ways forbidden by the laws of classical physics. In this respect, entanglement between
canonically conjugate continuous variables (CV) of infinite-dimensional systems, such as
harmonic oscillators, light modes and atomic ensembles, has emerged as a versatile and
powerful resource [2]. In particular, multimode Gaussian states have been proven useful for
a wide range of implementations in CV quantum information processing [3], and advances
in the characterization of their bipartite and multipartite entanglement have recently been
recorded [4]. In experiments, one typically aims at preparing pure states, with the highest
possible entanglement, even though unavoidable losses and thermal noises will affect the
purity of the engineered resources, and hence the efficiency of the realized protocols [5]. It is
therefore important to understand the structure of correlations in pure Gaussian states, and to
provide ‘economical’ schemes to produce such states in the lab with minimal elements, thus
reducing the possibility of accumulating errors and unwanted noise.

Gaussian states of CV systems are special in that they are completely specified by the
first and second moments of the canonical bosonic operators. However, this already reduced
set of parameters (compared to a true infinite-dimensional one needed to specify an arbitrary
non-Gaussian CV state) contains many redundant degrees of freedom which have no effect on
the entanglement. A basic property of multipartite entanglement is in fact its invariance under
unitary operations performed locally on the subsystems. To describe entanglement efficiently
is thus natural to lighten quantum systems of the unnecessary degrees of freedom adjustable by
local unitaries (LUs), and to classify states according to standard forms representative of LU
equivalence classes [6]. When applied to Gaussian states of n modes, the freedom arising from
the LU invariance immediately rules out the vector of first moments, which can be arbitrarily
adjusted by local displacements in phase space (LUs on the Hilbert spaces) and thus made
null without any loss of generality. One is then left with the 2n(2n + 1)/2 real parameters
constituting the symmetric covariance matrix (CM) of the second moments (rigorously defined
in the following).

In this paper, we study the action of LU operations on a general CM of a multimode
Gaussian state. We compute the minimal number of parameters which completely characterize
Gaussian states, up to LUs. The set of such parameters will contain complete information
about any form of bipartite or multipartite entanglement in the corresponding Gaussian states.
We give accordingly the standard form of the CM of a (generally mixed) n-mode Gaussian
state. We then focus on pure states, the preferred resources for CV quantum communication
and information processing, and study how the additional constraint of global purity leads
to a further reduction of the minimal set of LU invariant parameters. We interpret those
degrees of freedom in terms of correlations between the canonical operators of the various
modes, and discuss how to engineer pure n-mode Gaussian states starting from a two-mode
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squeezed state and n−2 single-mode squeezed beams, via passive operations only. Our results
generalize the classification of [7], where the standard form of n-mode pure Gaussian states
with no correlations between position (x̂) and momentum (p̂) operators was given, together
with an optimal scheme to engineer such ‘block-diagonal’ resources (employed in most CV
quantum information protocols) in an optical setting. In this respect, we show that nonzero
x̂-p̂ correlations lead to an enhancement of the typical entanglement in the sense of [8].

2. Technical introduction

We consider systems described by pairs of canonically conjugated operators {x̂j , p̂j } with
continuous spectra, acting on a tensor product of infinite dimensional Hilbert spaces. Let
R̂ = (x̂1, p̂1, . . . , x̂n, p̂n) denote the vector of the operators x̂j and p̂j . The canonical
commutation relations for the R̂i can be expressed in terms of the symplectic form �:

[R̂j , R̂k] = 2i�jk, with � ≡
n⊕

j=1

ω, ω ≡
(

0 1
−1 0

)
.

The state of a CV system can be equivalently described by a positive trace-class operator
(the density matrix �) or by quasi-probability distributions. Throughout the paper, we shall
focus on states with Gaussian characteristic functions and quasi-probability distributions,
commonly referred to as ‘Gaussian states’. By definition, a Gaussian state � is completely
characterized by the first and second statistical moments of the canonical operators. We
will just consider states with null first moments, completely determined by the symmetric
covariance matrix (CM) σ with entries σjk ≡ Tr[�(X̂j X̂k + X̂kX̂j )]. Being the variances
and covariances of quantum operators, such entries are obtained by noise variance and noise
correlation measurements (obtained by ‘homodyne’ detection for optical systems). They
can be expressed as energies by multiplying them by the quantity h̄ω, where ω is the
frequency of the considered mode. In fact, for any n-mode state the quantity h̄ωTr(σ/4)

is just the contribution of the second moments to the average of the ‘free’ Hamiltonian
h̄ω

∑n
i=1

(
a
†
i ai + 1/2

)
.

Let us recall some useful results about symplectic operations, along with their
consequences on the description of Gaussian states. Being positive definite [9], the CM
of a n-mode Gaussian state can always be written as

σ = ST νS, (1)

with S ∈ Sp(2n,R) and

ν = diag(ν1, ν1, . . . , νn, νn), (2)

corresponding to the CM of a tensor product of states at thermal equilibrium with local
temperatures Tj = 2(νj − 1). The quantities {νj } are referred to as the symplectic eigenvalues
of the CM σ, the transformation S is said to perform a symplectic diagonalization of σ, while
the diagonal matrix with identity blocks ν is referred to as the Williamson form of σ [10]. The
symplectic eigenvalues {νj } can be determined as the positive square roots of the eigenvalues
of the positive matrix −�σ�σ. Such eigenvalues are in fact invariant under the action of
symplectic transformations on the matrix σ.

We briefly remark that all the entropic quantities of Gaussian states can be expressed in
terms of their symplectic eigenvalues. Notably, the ‘purity’ Tr �2 of a Gaussian state � is
simply given by the symplectic invariant Det σ = ∏n

i=1 νi , being Tr �2 = (Det σ)−1/2.
Central to our analysis will also be the following general decomposition of a symplectic

transformation S (referred to as the ‘Euler’ or ‘Bloch–Messiah’ decomposition [11, 12]):

S = O ′ZO, (3)
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where O,O ′ ∈ K(n) = Sp(2n, R) ∩ SO(2n) are orthogonal symplectic transformations,
while

Z = ⊕n
j=1

(
zj 0
0 1

zj

)
,

with zj � 1∀j . The set of such Z’s forms a non-compact subgroup of Sp2n,R comprised of local
(single-mode) squeezing operations (borrowing the terminology of quantum optics, where
such transformations arise in degenerate parametric down-conversion processes). Moreover,
let us also mention that the compact subgroup K(n) is isomorphic to the unitary group U(n),
and is therefore characterized by n2-independent parameters. To acquaint the reader with
the flavour of the counting arguments which will accompany us through this paper (and
with the nontrivial aspects contained therein), let us combine the Williamson and the Euler
decomposition to determine the number of degrees of freedom of an arbitrary mixed n-mode
Gaussian state (up to first moments), thus obtaining n + 2n2 + n − n = 2n2 + n. The first two
addenda are just the sum of the number of symplectic eigenvalues (n) and of degrees of freedom
of a symplectic operation (2n2 + n, resulting from two symplectic orthogonal transformations
and from n single-mode squeezing parameters). Finally, the subtracted n takes into account
the invariance under single-mode rotations of the local Williamson forms (which ‘absorbs’
one degree of freedom per mode of the symplectic operation describing the state according
to equation (1)). Actually the previous result is just the number of degrees of freedom of a
2n × 2n symmetric matrix (in fact, the only constraint σ has to fulfil to represent a physical
state is the semidefinite σ + i� � 0, which compactly expresses the uncertainty relation for
many modes [13]).

Finally, we recall the form of the CM σ2m of a two-mode squeezed state:

σ2m =

⎛
⎜⎜⎝

cosh r 0 sinh r 0
0 cosh r 0 −sinh r

sinh r 0 cosh r 0
0 −sinh r 0 cosh r

⎞
⎟⎟⎠ , (4)

parametrized by the positive squeezing r. This class of states represents the prototype of CV
entanglement both for the experimentalist (it can be generated by non-degenerate ‘parametric
down conversion’) and for the theorist (it encompasses, in the limit r → ∞, the perfectly
correlated seminal Einstein–Podolsky–Rosen state [14]) and will play a crucial role in several
arguments to follow.

3. Standard forms of mixed states

Before addressing the reductions of pure states, let us briefly consider the standard forms of
general mixed n-mode Gaussian states under local, single-mode symplectic operations. Let us
express the CM σ in terms of 2 × 2 sub-matrices σjk , defined by

σ ≡

⎛
⎜⎝

σ11 · · · σ1n

...
. . .

...

σT
1n · · · σnn

⎞
⎟⎠

each sub-matrix describing either the local CM of mode j (σjj ) or the correlations between
the pair of modes j and k (σjk).
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Let us remind the reader of the Euler decomposition of a generic single-mode symplectic
transformation S1(ϑ

′, ϑ ′′, z):

S1(ϑ
′, ϑ ′′, z) =

(
cos ϑ ′ sin ϑ ′

−sin ϑ ′ cos ϑ ′

) (
z 0
0 1

z

)(
cos ϑ ′′ sin ϑ ′′

−sin ϑ ′′ cos ϑ ′′

)

into two single-mode rotations (phase shifters, with reference to the ‘optical phase’ in phase
space) and one squeezing operation. We will consider the reduction of a generic CM σ
under local operations of the form Sl ≡ ⊕n

j=1 S1(ϑ
′
j , ϑ

′′
j , zj ). The local symmetric blocks

σjj can all be diagonalized by the first rotations and then symplectically diagonalized (i.e.,
made proportional to the identity) by the subsequent squeezings, such that σjj = aj12 (thus
reducing the number of parameters in each diagonal block to the local symplectic eigenvalue,
determining the entropy of the mode). The second series of local rotations can then be
applied to manipulate the non-local blocks, while leaving the local ones unaffected (as they
are proportional to the identity). Different sets of n entries in the non-diagonal sub-matrices
can be thus set to zero. For an even total number of modes, all the non-diagonal blocks
σ12,σ34, . . . ,σ(n−1)n describing the correlations between disjoint pairs of quadratures can be
diagonalized (leading to the singular-value diagonal form of each block), with no conditions
on all the other blocks. For an odd number of modes, after the diagonalization of the blocks
relating disjoint quadratures, a further non-diagonal block involving the last mode (say, σ1n)
can be put in a triangular form by a rotation on the last mode.

Note finally that the locally invariant degrees of freedom of a generic Gaussian state of
n modes are (2n + 1)n − 3n = 2n2 − 2n, as follows from the subtraction of the number of
free parameters of the local symplectics from the one of a generic states—with an obvious
exception for n = 1, for which the number of free parameters is 1, due to the rotational
invariance of single-mode Williamson forms (see the discussion about the vacuum state in
section 5).

4. Degrees of freedom of pure Gaussian states

Pure Gaussian states are characterized by CMs with Williamson form equal to the identity.
As we have seen, the Williamson decomposition provides a mapping from any Gaussian
state into the uncorrelated product of thermal (generally mixed) states: such states are pure
(corresponding to the vacuum), if and only if all the symplectic eigenvalues are equal to 1.

The symplectic eigenvalues of a generic CM σ are determined as the eigenvalues of the
matrix |i�σ|, where � stands for the symplectic form. Therefore, a Gaussian state of n modes
with CM σ is pure if and only if

−σ�σ� = 12n. (5)

It will be convenient here to reorder the CM, and to decompose it in the three sub-matrices
σx,σp and σxp, whose entries are defined as

(σx)jk = Tr[�x̂j x̂k], (σp)jk = Tr[�p̂j p̂k], (σxp)jk = Tr[�{x̂j , p̂k}/2], (6)

such that the complete CM σ is given in a block form by

σ =
(

σx σxp

σT
xp σp

)
. (7)

Let us note that the matrices σx and σp are always symmetric and strictly positive, while the
matrix σxp does not obey any general constraint.
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Equations (5) and (7) straightforwardly lead to the following set of conditions:

σxσp = 1n + σ2
xp, (8)

σxpσx − σxσ
T
xp = 0, (9)

σpσx = 1n + σT2
xp, (10)

σT
xpσp − σpσxp = 0. (11)

Now, equation (10) is obviously obtained by transposition of equation (8). Moreover, from
(8) one gets

σp = σ−1
x

(
1n + σ2

xp

)
, (12)

while equation (9) is equivalent to

σ−1
x σxp − σT

xpσ−1
x = 0, (13)

(the latter equations hold generally, as σx is strictly positive and thus invertible).
Equation (13) allows one to show that any σp determined by (12) satisfies condition (11).
Therefore, only equations (8) and (9) constitute independent constraints and fully characterize
the CM of pure Gaussian states.

Given any (strictly positive) matrix σx and (general) matrix σxp, the fulfillment of
condition (9) allows us to specify the second moments of any pure Gaussian state, whose
sub-matrix σp is determined by equation (12) and does not involve any additional degree of
freedom.

A straightforward counting argument thus yields the number of degrees of freedom of an
arbitrary pure Gaussian state, by adding the entries of a general and of a symmetric n × n

matrices and subtracting the equations of the antisymmetric condition (9): n2 + n(n + 1)/2 −
n(n − 1)/2 = n2 + n, in compliance with the number dictated by the Euler decomposition of
a symplectic operation:

σ = ST12nS = OTZ2O. (14)

Note that, if either σx or σxp are kept fixed, constraint (9) is just a linear constraint on the
entries of the other matrix, which can always be solved (it cannot be overdetermined, since
the number of equations n(n − 1)/2 is always smaller than the number of variables, either n2

or n(n + 1)/2).
A preliminary insight into the role of local operations in determining the number of

degrees of freedom of pure CMs is gained by analysing the counting of free parameters in the
continuous variable analogue of the Schmidt decomposition. The CM of any pure (m + n)-
mode Gaussian state is equivalent, up to local symplectic transformations on the m-mode and
n-mode subsystems, to the tensor product of m-decoupled two-mode squeezed states
(assuming, without loss of generality, m � n) and n − m uncorrelated vacua [15]. Besides
the m-two-mode squeezing parameters, the degrees of freedom of the local symplectic
transformations to be added are 2n2 + n + 2m2 + m. However, a mere addition of these
two values leads to an overestimation with respect to the number of free parameters of pure
CMs determined above. This is due to the invariance of the CM in ‘Schmidt form’ under
specific classes of local operations. Firstly, the (n − m)-mode vacuum (with CM equal to the
identity) is trivially invariant under local orthogonal symplectics, which account for (n − m)2

parameters. Furthermore, one parameter is lost for each two-mode squeezed block with CM
σ2m given by equation (4): this is due to an invariance under single-mode rotations peculiar to
two-mode squeezed states. For such states, the sub-matrices σ2m

x and σ2m
p have identical—and
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all equal—diagonal entries, while the sub-matrix σ2m
xp is null. Local rotations embody two

degrees of freedom—two local ‘angles’ in phase space—in terms of operations. Now, because
they act locally on 2 × 2 identities, rotations on both single modes cannot affect the diagonals
of σ2m

x and σ2m
p , nor the diagonal of σ2m

xp , which is still equal to zero. In principle, they could
thus lead to two (possibly different) non-diagonal elements for σ2m

xp and/or to two different
non-diagonal elements for σ2m

x and σ2m
p (which, at the onset, have opposite non-diagonal

elements, see equation (4)), resulting in

σ2m
x =

(
a c1

c1 a

)
, σ2m

p =
(

a c2

c2 a

)
, σ2m

xp =
(

0 y

z 0

)
.

However, elementary considerations, easily worked out for such 2 × 2 matrices, show that
equations (9) and (12) imply

c1 = −c2, y = z and a2 − c2
1 = 1 + y2.

These constraints reduce from 5 to 2 the number of free parameters in the state: the action
of local single-mode rotations—generally embodying two independent parameters—on two-
mode squeezed states allows for only one further independent degree of freedom. In other
words, all the Gaussian states resulting from the manipulation of two-mode squeezed states
by local rotations (phase shifters, in the experimental terminology) can be obtained by acting
on only one of the two modes. One of the two degrees of freedom is thus lost and the counting
argument displayed above has to be recast as m + 2n2 + n + 2m2 + m − (m − n)2 − m =
(m + n)2 + (m + n), in compliance with what we had previously established.

As we are about to see, this invariance, peculiar to two-mode squeezed states, also accounts
for the reduction of locally invariant free parameters occurring in pure two-mode Gaussian
states.

5. Reduction under single-mode operations

Let us now determine the reduction of degrees of freedom achievable for pure Gaussian states
by applying local single-mode symplectic transformations. Note that all the entanglement
properties (both bipartite and multipartite) of the states will solely depend on the remaining
parameters, which cannot be cancelled out by LU operations.

In general, for n-mode systems, local symplectic operations have 3n degrees of freedom,
while n-mode pure Gaussian states are specified, as we just saw, by n2 + n quantities. The
subtraction of these two values yields a residual number of parameters equal to n2 − 2n.
However, this number holds for n � 3, but fails for single- and two-mode states. Let us
analyse the reasons of this occurrence.

For single-mode systems, the situation is trivial, as one is allowing for all the possible
operations capable, when acting on the vacuum, to unitarily yield any Gaussian possible state.
The number of free parameters is then clearly zero (as any state can be reduced into the vacuum
state, with CM equal to the 2 × 2 identity). The expression derived above would instead give
−1. The reason of this mismatch is just to be sought in the invariance of the vacuum under local
rotations: only two of the three parameters entering the Euler decomposition actually affect
the state. On the other hand, one can also note that these two latter parameters, characterizing
the squeezing and subsequent last rotation of the Euler decomposition acting on the vacuum,
are apt to completely reproduce any possible single-mode state. Clearly, this situation is the
same as for any n-mode pure Gaussian state under global operations: the first rotation of the
Euler decomposition is always irrelevant, thus implying a corresponding reduction of the free
parameters of the state with respect to the most general symplectic operation.
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As for two-mode states, the counting argument above would give zero locally invariant
parameters. On the other hand, the existence of a class of states with a continuously varying
parameter determining the amount of bipartite entanglement (the two-mode squeezed states
of equation (4)) clearly shows that the number of free parameters cannot be zero. Actually,
local symplectic operations allows one to bring any (pure or mixed) two-mode Gaussian state
in a ‘standard form’ with σxp = 0 and with identical diagonals for σx and σp. Imposing then
equation (9) on such matrices, one finds that the only pure states of such a form have to be
two-mode squeezed states. Therefore, we know that the correct number of locally invariant
free parameters has to be 1. Even though local symplectic operations on two-mode states are
determined by six parameters, they can only cancel five of the six parameters of pure two-mode
states. This is, again, due to the particular transformation properties of two-mode squeezed
states under single-mode rotations, already pointed out in section 4 when addressing the
counting of degrees of freedom in the Schmidt-like decomposition: local rotations acting on
a two-mode squeezed state add only one independent parameter. The most general two-mode
pure Gaussian state results from a two-mode squeezed state by a single local rotation on any of
the two modes, followed by two local squeezings and two further rotations acting on different
modes. Note that the same issue arises for (m+n)-mode states to be reduced under local m- and
n-mode symplectic operations. A mere counting of degrees of freedom would give a residual
number of local free parameters equal to (m + n)2 + m + n− 2m2 − 2n2 − m − n= −(m − n)2.
This result is obviously wrong, again due to a loss of parameters in the transformations of
particular invariant states. We have already inspected this very case and pointed out such
invariances in our treatment of the Schmidt decomposition (the previous section): we know that
the number of locally irreducible free parameters is just min(m, n) in this case, corresponding
to the tensor product of two-mode squeezed states and uncorrelated vacua.

For n � 3, local single-mode operations can fully reduce the number of degrees of
freedom of pure Gaussian states by their total number of parameters. The issue encountered
for two-mode states does not occur here, as the first single-mode rotations can act on different
non-diagonal blocks of the CM (i.e., pertaining to the correlations between different pairs
of modes). The number of such blocks is clearly equal to (n2 − n)/2, while the number of
local rotations is just n. Only for n = 1, 2 is the latter value larger than the former: this
is, ultimately, why the simple subtraction of degrees of freedom only holds for n � 3. To
better clarify this point, let us consider a CM σ3m in the limiting instance n = 3. The general
standard form for (mixed) three-mode states implies the conditions (see section 3)

diag
(
σ3m

x

) = diag
(
σ3m

p

)
(15)

and

σ3m
xp =

⎛
⎝0 0 0

0 0 u

s t 0

⎞
⎠ . (16)

The diagonal of σ3m
x coincides with that of σ3m

p (which always results from the local single-
mode Williamson reductions) while six entries of σ3m

xp can be set to zero. For pure states,
imposing equation (9) results into a linear system of three equations for the nonzero entries
of σ3m

xp , with coefficients given by the entries of σ3m
x . Exploiting the complete positivity of

σ3m
x , one can show that such a system implies s = t = u = 0. Therefore, for pure three-mode

Gaussian states, the matrix σ3m
xp can be set to zero by local symplectic operations alone on the

individual modes. The entries of the symmetric positive definite matrix σ3m
x are constrained

by the necessity of equations (8)—which just determines σ3m
p —and (15), which is comprised

of three independent conditions and further reduces the degrees of freedom of the state to the
predicted value of 3. An alternative proof of this is presented in [16].
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Let us also incidentally remark that the possibility of reducing the sub-matrix σxp to zero
by local single-mode operations is exclusive to two-mode (pure and mixed) and to three-mode
pure states. This is because, for general Gaussian states, the number of parameters of σxp

after the local Williamson diagonalizations is given by n(n − 1) (two per pair of modes) and
only n of these can be cancelled out by the final local rotations, so that only for n < 3 can local
operations render σxp null. For pure states and n > 2 then, further n(n − 1)/2 constraints on
σxp ensue from the antisymmetric condition (9): this number turns out to match the number
of free parameters in σxp for n = 3, but it is no longer enough to make σxp null for pure states
with n � 4.

Summing up, we have rigorously determined the number of ‘locally irreducible’ free
parameters of pure Gaussian states, unambiguously showing that the quantification and
qualification of the entanglement (which, by the definition, is preserved under LU operations)
in such states of n modes is completely determined by 1 parameter for n = 2 and (n2 − 2n)

parameters for n > 2.

6. Efficient state engineering of multimode pure Gaussian states

It would be desirable to associate the mathematically clear number (n2 − 2n) with an
operational, physical insight. In other words, it would be useful for experimentalists (working,
for instance, in quantum optics) to be provided with a recipe to create pure n-mode Gaussian
states with completely general entanglement properties in an ‘economical’ way; in the precise,
specific sense that exactly (n2 − 2n) optical elements are used. A transparent approach to
develop such a procedure consists in considering the reverse of the phase-space 1 × (n − 1)

Schmidt decomposition, as introduced in section 4. Namely, a completely general (not
accounting for the local invariances) state engineering prescription for pure Gaussian states
can be cast in two main steps: (1) create a two-mode squeezed state of modes 1 and 2, which
corresponds to the multimode state in its Schmidt form; (2) operate with the most general
(n−1)-mode symplectic transformation S−1 on the block of modes {2, 3, . . . , n} (with modes
i = 3, . . . , n initially in the vacuum state) to redistribute entanglement among all modes. The
operation S−1 is the inverse of the transformation S which brings the reduced CM of modes
{2, 3, . . . , n} in its Williamson diagonal form. It is also known that any such symplectic
transformation S−1 (unitary on the Hilbert space) can be decomposed in a network of optical
elements [17]6. The number of elements required to accomplish this network, however, will in
general greatly exceed the minimal number of parameters on which the entanglement between
any two sub-systems depends. Shifting the LU optimization from the final CM, back to the
engineering symplectic network, is in principle an extremely involuted and nontrivial task.

This problem has been solved in [7] for a special subclass of Gaussian states, which
is of central importance for practical implementations. It is constituted by those pure n-
mode Gaussian states which can be locally put in a standard form with null σxp. This class
encompasses generalized GHZ-type Gaussian states, useful for CV quantum teleportation
networks [18], and Gaussian cluster states [19] employed in CV implementations of one-way
quantum computation [20]. It also comprises (as proven in the previous section) all three-mode
pure Gaussian states [16], whose usefulness for CV quantum communication purposes has
been thoroughly investigated [21]. In the physics of many-body systems, those states are quite
ubiquitous as they are ground states of harmonic Hamiltonians with spring-like interactions
[22]. For these Gaussian states, which we shall call here block diagonal, the minimal number

6 Note that, even though [17] refers to compact (passive) transformations alone, the Euler decomposition,
which involves only passive operations and single-mode squeezings, allows one to straightforwardly extend such
decompositions in terms of single- and two-mode operations to general symplectic transformations.
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Figure 1. Possible scheme to create a general n-mode pure Gaussian state. White shaded
door-shaped (Schlutzkrapfen-like) objects depict vaccum modes, while darker ones (coloured in
online version) correspond to a different single-mode determinant (i.e. different degrees of local
mixedness). Vertical arrows denote single-mode squeezing operations with squeezing parameters
rj , horizontal circle-ended lines denote beam-splitting operations bi,j between modes i and j , and
horizontal diamond-ended lines denote two-mode seraphiques parametrized by ci,j . See the text
for details.

of LU-invariant parameters reduces to n(n − 1)/2 for any n.7 Accordingly, one can show that
an efficient scheme can be devised to produce block-diagonal pure Gaussian states, involving

7 This number is easily derived from the general framework developed in section 4: for σxp = 0, equations (8) and
(9) reduce to σx = σ−1

p . The only further condition to impose after the local reduction is then diag(σx) = diag(σ−1
x ),

which brings the number of free parameters of the symmetric σx from (n + 1)n/2 down to n(n − 1)/2.
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exactly n(n − 1)/2 optical elements which in this case are only constituted by single-mode
squeezers and beam splitters, in a given sequence [7].

Borrowing the ideas leading to the state engineering of block-diagonal pure Gaussian
states, we propose here a scheme, involving (n2 − 2n)-independent optical elements,
to produce more general n-mode pure Gaussian states encoding correlations between
positions and momentum operators as well. To this aim, we introduce ‘counter-beam
splitter’ transformations, named ‘seraphiques’, which, recovering the phase-space ordering of
section 2, act on two modes j and k as

Cj,k(ϑ) =

⎛
⎜⎜⎝

cos(ϑ) 0 0 sin(ϑ)

0 cos(ϑ) −sin(ϑ) 0
0 sin(ϑ) cos(ϑ) 0

−sin(ϑ) 0 0 cos(ϑ)

⎞
⎟⎟⎠ .

Such operations can be obtained by usual beam splitters (which we will denote by Bj,k(ϑ))
by applying a π/2 phase shifter Pk on only one of the two considered modes. Pk is a local
rotation mapping, in the Heisenberg picture, x̂k 	→ −p̂k and p̂k 	→ x̂k . In phase space,
one has Cj,k(ϑ) = P T

k Bj,k(ϑ)Pk . Note that, even though Cj,k(ϑ) is equal to the product of
single-mode operations and beam splitters, this does not mean that such a transformation is
‘equivalent’ to a beam splitter in terms of state generation. In fact, the local operations do
not commute with the beam splitters, so that a product of the kind Bj,k(ϑ

′)Cj,k(ϑ
′′) cannot be

written as Bj,k(ϑ)Sl for some local operation Sl and ϑ .
The state engineering scheme runs along the lines as the one for the block-diagonal states,

the only modification being that for each pair of modes except the last one (n − 1, n), a
beam-splitter transformation is followed by a seraphique. In more detail (see figure 1): first
of all (step 1), one squeezes mode 1 of an amount s, and mode 2 of an amount 1/s (i.e.
one squeezes the first mode in one quadrature and the second, of the same amount, in the
orthogonal quadrature); then one lets the two modes interfere at a 50 : 50 beam splitter.
One has so created a two-mode squeezed state between modes 1 and 2, which corresponds
to the Schmidt form of the pure Gaussian state with respect to the 1 × (n − 1) bipartition.
The second step basically corresponds to a re-distribution, or allotment, of the initial two-mode
entanglement among all modes. This task can be obtained by letting each additional mode
interact step by step with all the previous ones, via beam splitters and seraphiques (which
are in turn combinations of beam splitters and phase shifters). Starting with mode 3 (which
was in the vacuum like all the subsequent ones), one thus squeezes it (by an amount r3) and
combines it with mode 2 via a beam splitter (characterized by a transmittivity b2,3) and a
subsequent seraphique (parametrized by c2,3). Then one squeezes mode 4 by r4 and lets it
interfere sequentially both with mode 2 (via a beam splitter with b2,4 and a seraphique with
c2,4) and with mode 3 (b3,4 and c3,4). This process can be iterated for each other mode, as
shown in figure 1, until the last mode n is squeezed (rn) and entangled with the previous ones
via beam splitters with respective transmittivities bi,n, i = 2, . . . , n − 1, and corresponding
seraphiques with amplitudes ci,n, i = 2, . . . , n−2. We remark that mode 1 becomes entangled
with all the other modes as well, even if it never comes to a direct interaction with each of
modes 3, . . . , n.

This scheme is implemented with minimal resources. Namely, the state engineering
process is characterized by one squeezing degree (step 1), plus n − 2 individual squeezings,
together with

∑n−2
i=1 i = (n − 1)(n − 2)/2 beam splitter transmittivities, and

[∑n−2
i=1 i

] − 1 =
n(n−3)/2 seraphique transmittivities, which amount to a total of (n2 −2n) quantities, exactly
the ones parametrizing a general pure Gaussian state of n � 3 modes up to local symplectic
operations. While this scheme is surely more general than the one for block-diagonal states,
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Figure 2. Typical entanglement, measured by the Von Neumann entropy, between one mode and
the remaining n − 1 modes in two classes of pure n-mode Gaussian states, for n � 4. Foreground
bars (light green in online version) denote completely general pure states, while background bars
(dark purple in online version) refer to block-diagonal pure states. For each n, the entanglement
is averaged over 10 000 random realizations of pure Gaussian states (with and without direct
x̂-p̂ correlations, respectively) according to the microcanonical state space measure introduced in
[8], at a fixed total energy E = 5n. Nonvanishing correlations between position and momentum
operators in the covariance matrix, clearly yield an increase in the typical entanglement of pure
Gaussian states, more evident with the increasing number n of modes.

as it enables us to efficiently create a broader class of pure Gaussian states for n > 3, we
shall leave it as an open question to check if the recipe of figure 1 is general enough to
produce all pure n-mode Gaussian states up to LUs. Verifying this analytically leads to pretty
cumbersome expressions already for n = 4. Instead, it would be very interesting to investigate
if the average entanglement of the output Gaussian states numerically obtained by a statistically
significant sample of applications of our scheme with random parameters, matches the typical
entanglement of pure Gaussian states under ‘thermodynamical’ state-space measures as
computable along the lines of [8]. This would prove the optimality and generality of our
scheme in an operational way, which is indeed more useful for practical applications.

7. Epilogue

In view of the previous, comprehensive characterization of structural and informational
properties of pure n-mode Gaussian states under LU operations, it is natural to question
if the n(n − 3)/2 additional parameters encoded in x̂-p̂ correlations for non-block-diagonal
states, have a definite impact on the bipartite and multipartite entanglement.

At present, usual CV protocols are devised, even in multimode settings, to make
use of states without any x̂-p̂ correlations. In such cases, the economical (relying on
(n − 1)n/2 parameters) ‘block-diagonal state engineering’ scheme detailed in [7] is clearly
the optimal general strategy for the production of entangled resources. However, theoretical
considerations strongly suggest that states with σxp 
= 0 might have remarkable potential for
improved quantum-informational applications. In fact, considering again the thermodynamical
entanglement framework of Gaussian states [8], one can define natural averages either on the
whole set of pure Gaussian states, or restricting to states with σxp = 0.8 Well, numerics
unambiguously show (see figure 2) that the average entanglement (under any bipartition) of
Gaussian states without x̂-p̂ correlations (like the ones considered in [7]) is systematically

8 The average over the whole set of pure Gaussian states is realized by integrating over the Haar measure of the
compact subgroup K(n), isomorphic to U(n). The restriction to all the states with vanishing xp block is instead
achieved by considering only orthogonal symplectic transformations of the form R ⊕R with R ∈ O(n)—which form
a group isomorphic to O(n)—and by integrating over the Haar measure of O(n) (as opposed to U(n)).
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lower than the typical entanglement of more general pure Gaussian states, with this behaviour
getting more and more manifest as the total number of modes increases (clearly, according to
what we have shown in this work, this only occurs for n > 3). In a way, the full entanglement
potential of Gaussian states is diminished by the restriction to block-diagonal states.

On the other hand, the comparison between the average entanglement generated in
randomizing processes based on the engineering scheme proposed here and the block diagonal
one is under current investigation as well. If the present scheme turned out to be out-performing
the previous ones in terms of entanglement generation—as expected in view of the argument
above—this would be a spur to the exploration of novel CV protocols, capable of adequately
exploiting x̂-p̂ correlated resources.
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